The Role of the Octarepeat Region in Neuroprotective Function of the Cellular Prion Protein

نویسندگان

  • Gerda Mitteregger
  • Milan Vosko
  • Bjarne Krebs
  • Wei Xiang
  • Veronika Kohlmannsperger
  • Svenja Nölting
  • Gerhard F Hamann
  • Hans A Kretzschmar
چکیده

Structural alterations of the cellular prion protein (PrP(C)) seem to be the core of the pathogenesis of prion diseases. However, the physiological function of PrP(C )remains an enigma. Cell culture experiments have indicated that PrP(C) and in particular its N-terminal octarepeat region together with the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways have a fundamental involvement in neuroprotection and oxidative stress reactions. We used wild-type mice, PrP knockout (Prnp(-/-)) animals and transgenic mice that lack the octarepeat region (C4/-) and subjected them to controlled ischemia. We identified an increased cleavage and synthesis of PrP(C) in ischemic brain areas of wild-type mice compared with sham controls. The infarct size in Prnp(-/-) animals was increased threefold when compared with wild-type mice. The infarct size in C4/- animals was identical to Prnp(-/-) mice, that is, around three times larger than in wild-type mice. We showed that the PrP in C4/- mice does not functionally rescue the Prnp(-/-) phenotype; furthermore it is unable to undergo beta cleavage, although an increased amount of C1 fragments was found in ischemic brain areas compared with sham controls. We demonstrated that the N-terminal octarepeat region has a lead function in PrP(C) physiology and neuroprotection against oxidative stress in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region

The neurodegenerative spongiform encephalopathies, or prion diseases, are characterized by the conversion of the normal cellular form of the prion protein PrP(C) to a pathogenic form, PrP(Sc) [1]. There are four copies of an octarepeat PHGG(G/S)WGQ that specifically bind Cu(2+) ions within the N-terminal half of PrP(C) [2--4]. This has led to proposals that prion diseases may, in part, be due t...

متن کامل

The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

The conversion of the prion protein (PrP(C)) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrP(C) interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat re...

متن کامل

The octarepeat region of prion protein, but not the TM1 domain, is important for the antioxidant effect of prion protein.

The cellular prion protein (PrP(c)) plays a crucial role in the pathogenesis of prion diseases, but its physiological function is far from understood. Several candidate functions have been proposed including binding and internalization of metal ions, a superoxide dismutase-like activity, regulation of cellular antioxidant activities, and signal transduction. The transmembrane (TM1) region of Pr...

متن کامل

Instability of the Octarepeat Region of the Human Prion Protein Gene

Prion diseases are a family of unique fatal transmissible neurodegenerative diseases that affect humans and many animals. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common prion disease in humans, accounting for 85-90% of all human prion cases, and exhibits a high degree of diversity in phenotypes. The etiology of sCJD remains to be elucidated. The human prion protein gene has an oct...

متن کامل

The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions.

Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrPC) into the pathogenic conformer PrPSc, which subsequently induces further conversion in an autocatalytic manner. Apparent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain Pathology (Zurich, Switzerland)

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007